Exercise 31

Use implicit differentiation to find an equation of the tangent line to the curve at the given point.

$$
2\left(x^{2}+y^{2}\right)^{2}=25\left(x^{2}-y^{2}\right), \quad(3,1), \quad \text { (lemniscate) }
$$

Solution

The aim is to evaluate y^{\prime} at $x=3$ and $y=1$ in order to find the slope there. Differentiate both sides of the given equation with respect to x.

$$
\begin{gathered}
\frac{d}{d x}\left[2\left(x^{2}+y^{2}\right)^{2}\right]=\frac{d}{d x}\left[25\left(x^{2}-y^{2}\right)\right] \\
2 \cdot 2\left(x^{2}+y^{2}\right) \cdot \frac{d}{d x}\left(x^{2}+y^{2}\right)=25\left[\frac{d}{d x}\left(x^{2}\right)-\frac{d}{d x}\left(y^{2}\right)\right] \\
2 \cdot 2\left(x^{2}+y^{2}\right) \cdot\left[(2 x)+\left(2 y y^{\prime}\right)\right]=25\left[(2 x)-\left(2 y y^{\prime}\right)\right] \\
8\left(x^{2}+y^{2}\right)\left(x+y y^{\prime}\right)=50\left(x-y y^{\prime}\right) \\
4\left(x^{2}+y^{2}\right)\left(x+y y^{\prime}\right)=25\left(x-y y^{\prime}\right)
\end{gathered}
$$

Solve for y^{\prime}.

$$
\begin{gathered}
4 x^{3}+4 x^{2} y y^{\prime}+4 x y^{2}+4 y^{3} y^{\prime}=25 x-25 y y^{\prime} \\
\left(4 x^{2} y+4 y^{3}+25 y\right) y^{\prime}=25 x-4 x^{3}-4 x y^{2} \\
y^{\prime}=\frac{25 x-4 x^{3}-4 x y^{2}}{4 x^{2} y+4 y^{3}+25 y}
\end{gathered}
$$

Evaluate y^{\prime} at $x=3$ and $y=1$.

$$
y^{\prime}(3,1)=\frac{25(3)-4(3)^{3}-4(3)(1)^{2}}{4(3)^{2}(1)+4(1)^{3}+25(1)}=-\frac{9}{13}
$$

Therefore, the equation of the tangent line to the curve represented by $2\left(x^{2}+y^{2}\right)^{2}=25\left(x^{2}-y^{2}\right)$ at $(3,1)$ is

$$
y-1=-\frac{9}{13}(x-3) .
$$

Below is a graph of the curve and the tangent line at $(3,1)$.

